HORIZON
Current projects
2023 to 2028
EU HORIZON Europe
3D Printing of Ultra-fideLity tissues using Space for anti-ageing solutions on Earth - Acronym - PULSE
Bioprinting in Space is one of the novel promising and perspective research directions in the rapidly emerging field of biofabrication. There are several advantages of bioprinting in Space. First, under the conditions of microgravity, it is possible to bioprint constructs employing more fluidic channels and, thus, more biocompatible bio-inks. Second, microgravity conditions enable 3D bioprinting of tissue and organ constructs of more complex geometries with voids, cavities, and tunnels. Third, a novel scaffold-free, label-free, and nozzle-free technology based on multi-levitation principles can be implemented under the condition of microgravity. The ideal Space bioprinters must be safe, automated, compact, and user friendly. Thus, there are no doubts that systematic exploration of 3D bioprinting in Space will advance biofabrication and bioprinting technology per se. Vice versa 3D bioprinted tissues could be used to study pathophysiological biological phenomena when exposed to microgravity and cosmic radiation that will be useful on Earth to understand ageing conditioning of tissues, and in space for the crew of deep space manned missions. In PULSE, we aim at developing a radical new bioprinting technology based on multiple levitation principles and to use Space as an accelerator of ageing on Earth. As a proof of concept study, we will use this newly developed bioprinting technology to create cardiac 3D in vitro models able to better mimic cardiac physiology compared to organoids. We will use such models to study cardiac ageing and test the efficacy of antiinflammatory/ anti-oxidative drugs with anti-ageing potential.
2023 to 2028
EU HORIZON Europe
Network for Evaluation of Propagation and Interference Training - MSCA Doctoral Networks
The widespread use of modern communication systems, the higher penetration of automated systems in automotive engineering, surgery, high-tech machines etc., the higher complexity present in those interconnected systems and the higher dependence of modern society on technology, creates an urgent need to recruit and train researchers in electromagnetic compatibility. This interconnected systems-ofsystems are creating a complex electromagnetic environment in which interoperability of the electrical and electronic equipment has to be achieved. A highly trained cadre of engineers is required to lead in this area and the aim of this initiative is to train such people, connecting them to the industry for implementation of the new acquired and developed knowledge and experience. The NEPIT consortium has been brought together not only to train qualified researchers but also to provide the fundamental research that underpins future technological developments. The multidisciplinary multinational doctoral training program will provide the trainee researchers with a complete broad experience and at the same time allows them to develop and eventually lead their focused area of research. The program will focus on the development of novel methods to model, simulate, design, evaluate and test complex systems for electromagnetic compatibility., NEPIT will also develop corrective economic measures for safe, reliable, efficient and greener complex systems. Specific innovations expected to be achieved through NEPIT are methodologies to optimize the design, to reduce risks, and to improve the testing of complex high-tech systems. Dissemination methods to realize optimal impact will include scientific publications, presentations and workshops, summer schools, training of engineers within industry as well as communication through newsletters, interviews, school visits, websites and social media.
2024 to 2027
EU HORIZON Europe
sd.,fms.fd.s,fdm.sd,fms.,dfm
sfdsfsdfsdf sfdsfsdfsdf sfdsfsdfsdf sfdsfsdfsdf sfdsfsdfsdf sfdsfsdfsdf sfdsfsdfsdf sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf, sfdsfsdfsdf
2023 to 2027
EU HORIZON Europe
European Glaucoma Research Training Program - Advancing the Approach of Advanced Glaucoma - "EGRET-aaa"
EGRET-AAA is a joint doctorate program to provide training in glaucoma research, leading to joint doctoral degrees for 15 ESRs. It converts existing partnerships between universities into long-lasting ones. Together with many private and societal partners, our consortium forms a cradle for a European network of highly skilled, resilient, entrepreneurial and creative researchers, who will inspire each other to excel in glaucoma research, both during and long after the funding period., EGRET-AAA will produce innovative treatments to protect and restore vision in patients with progressive eye disease glaucoma. By using revolutionary human retinal organoids, we will accelerate the development of new treatments and bring gene therapy and stem cell-based approaches a major step closer to clinical implementation, while minimizing the need for animal research. Through our findings, we will be able to protect the regenerated eye-brain connections and develop diagnostic techniques to select patients suitable for treatment and to evaluate intervention effects. By doing so, we will ultimately save approximately 1 million Europeans from blindness, and another 5 million from significant vision loss, thereby increasing their quality of life, and dramatically reducing societal and health care costs., Through our interdisciplinary and inter-sectoral training, the 15 ESRs will gain essential skills and assets for success in a broad range of careers in academia and beyond. Based on our previous experience gained on multiple training networks, we believe that this timely program provides an in- depth graduate research training environment of unrivalled quality and pertinence, far greater and better than the sum of its parts. By anticipating continued demand for the skills and experience of our ESRs, we see EGRET-AAA as the precursor of a permanent and sustainable glaucoma- focused European doctoral program.
2023 to 2026
EU HORIZON Europe
Metallic phase change material‐composites for thermal energy management
Thermal Energy Storage (TES) systems can give strategic contribution to efficiency and flexibility of intermittent power sourcesof various nature, but their temporal modulation up to long charge-discharge cycles passes through the tuning the thermal properties of the materials exchanging heat with fluids in TES systems.M-TES project proposes an innovative approach to manufacture by a low-cost one step process, granules of composite metallic Phase Change Materials, m-PCMs. Thus m-PCMs are form stable over the time. They can be tailored in term of enthalpy-temperature relationships and heat transfer properties, and mixed in different amounts to meet the local material requirement for flexible TES systems.The 3-year M-TES project will be focused on immiscible alloy systems based on recycled Al-Si casting alloys and Sn, with no need of Critical Raw Material, adding a new option for re-use and recycle them. M-TES project will: (I) identify thermophysical requirements form-pcms service, (II) study alloys surface and wetting properties to support the (III) study of suitable process conditions, (iv) obtainthermal/mechanical granule properties. A grained system will be tested as proof-of-concept, and (VI) its mechanical and heat transfer potential will be modeled to support further development, toward higher TRL and other alloys. The multidisciplinary project objectives will be accomplished thanks to the knowledge/equipment complementarity of partners: POLIMI, CNR, KIT, OVGU. They will work in strict interaction within and between WPs. The young researchers hired for the project will be forged to curious multidisciplinary and deep understanding. M-TES dissemination plan will spread results preferring openactivities, starting from scientific papers/conferences, widening to open science events for technicians/PhD students, up to the, general public.
2022 to 2026
EU HORIZON Europe
MELISSA Projekt MobilE artificiaL Intelligence Solution for DiabeteS Adapted care
Achieving near-normal glycaemic control remains to be challenging for the vast majority of people with type 1 or type 2 diabetes on intensive insulin treatment, despite advances in insulin delivery and glucose monitoring technology over the past decades. Daily insulin requirements of people with diabetes are dynamic due to major influence of known factors such as carbohydrate intake, physical activity, concurrent health conditions and various unknown factors including mood and variability in insulin absorption. While the effect of some of the known factors can partly be mitigated by the patients adjusting their daily insulin dosing, the effect of other (known and unknown) factors remain an obstacle to achievement of optimal glycaemic control and quality of life due to hyper- and hypoglycaemic excursions resulting from ‘erroneous’ insulin dosing. Consequently, many patients with diabetes do not reach recommended glycaemic targets and remain at increased risk of developing devastating late-diabetic complications. At present, systems for decision support with regards to daily insulin dosing for patients treated with Multiple Daily Injections (MDI) are limited to the coverage of basal insulin requirements and to simple bolus calculators of meal-related insulin administration working with fixed algorithms based on carbohydrate intake, correction factors and insulin on board. Enhancement of algorithms by Artificial Intelligence (AI) may have a considerable potential to further qualify daily decision-making for many people with diabetes by compensating for the effect of factors, which are not manageable to the patient, affecting the insulin need. Preliminary work based on in-silico simulations (preclinical validation) has shown that the AI-powered adaptive basal bolus algorithm in the MELISSA platform considerably improved glycaemic outcomes of people with already reasonably-well controlled type 1 diabetes., The proposed MELISSA project entails a large-scale randomised controlled clinical trial conducted in several European countries. The primary objective of the MELISSA study is to demonstrate superiority of glycaemic control as compared to the standard(s) of care not using AI-powered decision making with the primary endpoint being improvement of time-in-range and a range of clinically relevant secondary endpoints.
2020 to 2026
EU HORIZON Europe
3D-printing of PARTiculate FORMulations utilizing polymer microparticle-based voxels
New polymer materials are necessary to match the demand for highly integrated, multifunctional, responsive systems for sensing, information processing, soft robotics or multi-parametric implants. Both established material design concepts based on lithography, and emerging engineering efforts based on additive manufacturing (AM) are currently not able to fully address the need for topologically complex, multifunctional and stimuli-responsive polymer materials. This proposal aims at establishing a radically new approach for polymer material design, rethinking AM on both material and process level. Here, functionality will be already embedded at the building block level to emerge into larger scales. The exact methodology relies on polymer microparticles as a novel material basis with arbitrary geometry, function, mechanics and responsiveness. These microparticulate formulations will serve as predefined, voxel-like building blocks in AM yielding hierarchical assemblies with spatially defined voxel position and programmable, adaptive properties, which clearly go beyond existing functional material classes., With that, 3DPartForm will address the current lack of additive manufacturing providing multifunctional, stimuli-responsive materials, in which not only strongly different, but most importantly functional building blocks with intrinsic time axis will be processed into true 4D-polymer multimaterials. Products emerging from this approach will reach a previously unknown level of system integration, where optical transparency, electric and thermal conductivity as well as diffusivity and mechanical rigidity will become spatiotemporally tunable at single-voxel level. Coupled sensing and actuation operations will be realized by processing, transforming and manipulating single or combined input stimuli within these materials in the focus of 3DPartform, and platforms for biomimetics and cell-free biotechnology will be implemented as a long-term goal.
2021 to 2025
EU HORIZON Europe
Körpergedächtnis (Body Memory)
In diesem Projekt werden moderne Verfahren der Bildgebung kombiniert mit virtueller Realität um zu verstehen, wie negative Körpererinnerungen sich auf somatische Symptome und mentale Gesundheit auswirken.
2021 to 2025
EU HORIZON Europe
Holistic Fire Management Ecosystem for Prevention, Detection and Restoration of Environmental Disasters
Akronym:, TREEADS, Title:, A Holistic Fire Management Ecosystem for Prevention, Detection and Restoration of Environmental Disasters, German Pilot Project:, Fire Science of wildfires and safety measures, A direct consequence of climate change are longer drier periods of drought, even in countries which traditionally had a lot of rain, e.g., in Germany. The German provinces Saxony-Anhalt and Brandenburg are two of the most affected by extreme dryness in Germany. Concurrently dry summers have led to substantial amounts of dry biomass and increasing damage due to insects and diseases. Extreme weather as heavy rain and storms have led to additional damage in the forests., A direct consequence of climate change are longer drier periods of drought, even in countries which traditionally had a lot of rain, e.g., in Germany. The German provinces Saxony-Anhalt and Brandenburg are two of the most affected by extreme dryness in Germany. Concurrently dry summers have led to substantial amounts of dry biomass and increasing damage due to insects and diseases. Extreme weather as heavy rain and storms have led to additional damage in the forests., Figure1Dryness of ground in Germany in September 2020, darker colour - severer dryness, [1], In Germany about 32 % of the surface area is covered by forests. In Saxony-Anhalt and Brandenburg, a sizeable percentage of the forest vegetation is composed of pine trees which can survive on poor soils. Efforts are being made to change the diversity of the forests to ensure survival and enhance robustness. Often the forests are part of conservation areas with strict protection rules against contamination and damage. Over the past five years these regions have seen fires that are growing in number, severity and affected area. The dryness monitor for Germany shows that Saxony-Anhalt and Brandenburg are some of the driest parts of Germany. Most fires in both provinces have been ground fires which are dependent on dryness and dead organic material. It is crucial to understand the mechanisms of fire spread in ground fires for these areas with their habitat and vegetation under the growing influence of dryness and damaged vegetation. To achieve this, experiments in medium and large scale are undertaken using ground specimen up to several square meters, to evaluate the dependence of the fire spread on various kinds of vegetation as well as different amounts of organic mass in the ground and dryness. Smoke production and smoke toxicity depend on the combustion conditions - availability of oxygen, and heat transfer, as well as the kind of vegetation that burns. Better understanding these mechanisms allows for more precise prediction of fire and smoke development which is crucial for assessing and improving firefighting tactics. A catalogue of different wildfire scenarios is to be developed and is the basis for recommendations of firefighting measures. On the one hand water is argued to be the most eco-friendly extinguisher. On the other hand, substantial amounts of water are often necessary, especially in ground fires. Additives can lead to a significant increase in volume and therefore help to preserve water which is a valuable resource in dry areas. Effective extinguishment reduces damage as it is important to assess both: the damage to the ecosystem due to the fire itself and the extinguishment method. It is expected that different extinguishment methods and firefighting measures are necessary for different fire scenarios and depend on vegetation, weather, topography, and area. In an area with restrictive conservation rules other measures and extinguishment agents might be applicable than in an industry wood area. Pollution of air, ground and water are to be assessed. Smoke production of these fires is a health risk for fire fighters as well as for inhabitants of villages close to forest areas. Safety measures and guidelines for situations with high smoke production, smoke movement and dispersion are fundamental for safety of fire fighters and inhabitants. Evacuation of villages are a strong measure and must be assessed to give guidelines when it is necessary to undertake them.Completed projects
2021 to 2025
EU HORIZON Europe
European Training and Research Program in Translational Vision Science to ensure Optimal support of Visually Impaired Individuals through Tests and Tools of Functional Vision - "OPTIVIST"
Als Hauptanliegen verfolgt OptiVisT die Ausweitung der sozialen Teilhabe von Personen mit Sehbeeintra¨chtigungen durch innovative und umfassende Versorgung. Dazu beno¨tigen wir sowohl neue Erkenntnisse als auch innovative Testmethoden um funktionelle Aspekte der Sehleistung zu bestimmen, zu trainieren und zu vergro¨ßern. Folglich werden transla- tionale Sehforscher beno¨tigt mit einer Expertise in Sehforschung, Technologie und Ge- sundheitsversorgung. Solche Wissenschaftler sind zwar gefragt, aber selten, da es aktuell kein entsprechendes Experten-Trainingsprogramm gibt., Durch OptiVisT werden 15 Nachwuchsforschende (ESRs) ausbildet, die zur na¨chsten Gene- ration von Spezialisten fu¨r translationale Sehforschung werden und fu¨hrende Positionen im Gesundheitswesen, der Industrie oder in der Wissenschaft einnehmen ko¨nnen. Sie werden lernen, visuelle Anforderungen von Aktivita¨ten des ta¨glichen Lebens zu quantifi- zieren und ihre neuen Erkenntnisse nutzen, um objektive, effektive und benutzerfreund- liche Tests und Werkzeuge fu¨r das funktionale Sehen zu entwerfen. Experten bezu¨glich Anwendung, Evaluation und Valorisierung von Lo¨sungsansa¨tzen werden sicherstellen, dass unsere ESRs auch wissen, wie sie ihre neuen Tests und Werkzeuge in der realen Welt zum Erfolg fu¨hren ko¨nnen. Diese Fa¨higkeiten sind dringend erforderlich, um die Hinder- nisse zu beseitigen, die derzeit den Fortschritt im Bereich der translationalen Sehforschung einschra¨nken. Durch unser innovatives Forschungsprogramm werden die ESR das Leben von Millionen von Menschen mit Sehbehinderung in Europa verbessern ko¨nnen, indem sie ihre Mo¨glichkeiten zu arbeiten, Sport zu treiben und an einer breiteren Gesellschaft teilzunehmen, weitgehend verbessern.
2023 to 2025
EU HORIZON Europe
COGSTIM: Online Computational Modulation of Visual Perception.
HORIZON TMA MSCA Postdoctoral Fellowship - European Fellowship for Dr. Corentin Gaillard:, Computational models of vision often address problems that have a single and definite end-point, such as visual recognition: an example of this might be to find a ripe banana in a complex scene. However, not all computation is of this form. Visual information is processed continuously in sensory areas and the nervous system has the capacity to alter or halt an ongoing behavioural response to changes in incoming information. We can therefore react flexibly to updated sensory input or changed requirements for motor output. On the other hand, these same neuronal mechanisms must also support perceptual stability, so that noisy signals do not cause loss of a crucial goal. In project COGSTIM, I will investigate the functional neuronal networks that support the balance between perceptual flexibility and stability, within primate visual areas. I will use a highly innovative approach, combining dense electrophysiological recording with online (real-time) decoding of neuronal correlates of the subject’s perceptual choice, based on adaptive machine-learning algorithms. In order to control visual perception effectively and predictably, closed-loop electrical stimulation will be applied under dynamically adjusted feedback to identified neuronal circuits that causally modulate associated percepts. Crucially, this novel approach using joint decoding and stimulation in real time will allow me to target dynamically visual percepts, representing a significant advance in our understanding of on-going, continuous computations of the primate brain. Such developments offer promising bases for the future development of rehabilitative therapeutical protocols, as well as innovative brain machine interfaces suitable for real-world use.
2021 to 2024
EU HORIZON Europe
Development of an efficient steganalysis framework for uncovering hidden data in digital media (UNCOVER)
Criminals and terrorists use more and more data hiding methods (steganography) for concealing incriminating information in innocent-looking digital media files such as images, video, audio, and text files. UNCOVERs main objective is to fill existing gaps in the ability of Law Enforcement Agencies (LEAs) for detecting the presence of such hidden information (i.e. steganalysis). To carry out a full investigation into criminal and terrorist activities, LEAs currently use available (commercial) tools to detect hidden information in collected digital media. However, these tools detect only a limited number of hiding methods, are slow, and offer no indication of confidence. Moreover, many commercial tools lag a decade behind the scientific state-of-the-art. The members of UNCOVER are committed to bridge these gaps and thus substantially increase the technological autonomy of LEAs in the field of digital media steganalysis. With its consortium of 22 partners including LEAs, forensic institutes, leading researchers working at universities and research institutions, as well as industrial companies, UNCOVER sets out to outperform available steganalysis solutions in terms of performance (number of detectable steganographic methods, detection accuracy), usability, operational needs, privacy protection, and chain-of-custody considerations. The developed detection and investigation tools will be integrated into a flexible and user-friendly platform. End-users play a key role throughout the project cycle: from proposal writing over analysis of user requirements and tools development through the final evaluation. In particular, regular feedback cycles with LEAs, forensics institutes and external stakeholders will ensure that the developed solutions can be integrated into the daily criminal investigation pipeline of LEAs. A set of clearly defined Key Performance Indicators allows an objective evaluation of progress and end results against the defined objectives.
2023 to 2024
EU HORIZON Europe
SBAS: A Secure Underlay for the Internet
Modern secure Internet routing solutions, like Border Gateway Protocol-Security (BGPsec) and Scalability, Control and Isolation On Next-generation networks (SCION), remain under deployed. Addressing this gap, the SBAS project presents an innovative approach, integrating it as a unified virtual AS within the prevailing BGP-oriented Internet. Through this, SBAS aims to provide hundreds of thousands of users with secure routing via the established SCION network., Tackling key challenges:, Sustainability: Using SCION's path-aware infrastructure, SBAS offers optimized "green" routing, minimizing the Internet's carbon footprint., Cross-Atlantic Digital Governance: Unlike the traditional singular trust model, SCION promotes individualized trust-based connections. SBAS, leveraging SCION, fosters secure cross-border data interactions for regular Internet users., Data Security and Privacy: In today's Internet, control vulnerabilities and hijacking are concerns. SCION introduces defined sovereign Internet regions, and SBAS, built atop it, ensures data sovereignty and geo-fencing while resisting hijacking attacks, all without compromising global communication., The project's core goal is deploying and evaluating SBAS across the operational SCION network, enriching secure routing access for a vast user base. To materialize this, we'll establish SBAS Points of Presence (PoPs) within SCION, serving as a foundation for experiments and performance evaluations, underscoring SBAS's advancements in security and efficiency.
2019 to 2023
EU HORIZON Europe
3D imaging calibration on granular flow of anisotropic, cohesive and soft particles.
In the CALIPER project, experimental and numerical methods for describing the behavior of granular materials in various applications are being developed and tested. In subproject 12, the focus is on the application of non-invasive imaging techniques (MRI, X-ray CT) to observe the internal structure and dynamics of ensembles of granular particles. A characteristic aspect of our investigations is the characterization of soft granular particles, i.e. particles in which the elasticity of the individual particles exerts a significant influence on the dynamics of the entire ensemble., This text was translated with DeepL
2022 to 2022
EU HORIZON Europe